Авиационные приборы и системы

Возможно осуществление множества разновидностей схем и конструкций, построенных на данной схеме, однако все они содержат элементы общего назначения: чувствительный элемент – сильфон 1, нуль-орган 2, усилитель 3, обратную связь (эталон) 4, выходное устройство 5.

Если сравнить структурную схему компенсационного датчика со структурной схемой позици-онного датчика давления (рис. 4.29), то увидим принципиальную разницу между ними. В компенсационной схеме большее число элементов охвачено основной обратной связью. Полное уравнение схемы рис. 4.28 имеет вид [39]

. (4.25)

Установившееся значение выходной величины y1О имеет вид (t > ?)

. (4.26)

Полное уравнение движения по схеме рис. 4.29 имеет вид

, (4.27)

Рис. 4.29. Структурная схема электромеханического датчика давления, построенного на схеме с использованием хода чувствительного элемента 1 – чувствительный элемент, 2 – вторичный преобразователь, 3 – усилитель с двигателем, 4 – основная обратная связь (электрическая), 5 – выходное устройство

а установившееся значение выходной величины y2О:

. (4.28)

Сравнивая уравнения (4.26) и (4.28), находим свойство схемы силовой компенсации, заклю-чающееся в том, что в ней на результат измерения влияет меньшее число элементов. Параметры нуль — органа в линейном приближении не оказывают влияния на точность измерения. Практиче-ски это свойство тем точнее реализуется, чем больше модель датчика приближается к линейной. В идеальном случае это значит, что в измерительной цепи датчика не должно быть элементов с зоной нечувствительности, а замкнутая цепь следящей системы должна быть астатической.

Устройство нуль — органа работает практически с незначительными перемещениями (в одной точке) в пределах своей характеристики. В связи с этим элементы следящей системы можно по-добрать более точно, и работает она более точно. Это второе свойство компенсационной схемы.

В схеме же рис. 4.29 характеристики вторичного преобразователя 2 существенно влияют на ка-чество измерения, как было показано выше.

В позиционной схеме рис. 4.29 чувствительный элемент выполняет очень сложную функцию – принимает информацию об изменении давления и преобразует ее в перемещение нужной величи-ны. Он является сложным преобразователем и движителем одновременно. От него требуются ха-рактеристики: высокая чувствительность, отсутствие гистерезиса, стабильность во времени.

Функции чувствительного элемента в компенсационной схеме проще – преобразовывать дав-ление в силу, не совершая значительных перемещений рабочего центра. Идеально – это поршень без трения. Такие задачи, как передавать информацию в решающее устройство в виде перемеще-ния, стабильность во времени, иметь малый гистерезис в этой схеме переносится на элемент об-ратной связи (механическая пружина, электромагнит). В этом заключается третье свойство ком-пенсационной силовой схемы.

На рис. 4.30 и рис. 4.31 приведены принципиальная и конструктивная схемы компенсационно-го датчика давления с механической точеной высокоточной пружиной в качестве эталона силы, который был разработан и изготовлен УКБП.

Новизна этого датчика заключается в том, что с целью повышения виброустойчивости, точеная пружина выполнена с витками переменной жесткости.

Рис. 4.30.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84