Авиационные приборы и системы

Аэродинамическое качество К = Сy/Сx в свободномолекулярном потоке при диффузионном отражении молекул мало. Так, при М = 1 К = 0,5, а при М = 20 К = 0,1. Это подтверждает факт того, что эффективность несущей поверхности летательного аппарата в разреженной атмосфере мала.

Основные выводы о природе образования подъемной силы

Подъемная сила независимо от направления набегающего потока всегда направлена перпенди-кулярно этому направлению и лежит в плоскости симметрии самолета.

Подъемная сила может быть положительной, если угол атаки положителен, и отрицательной при отрицательном угле атаки.

Симметричные профили при нулевом угле атаки не создают подъемной силы.

Формула подъемной силы является полуэмпирической и не дает возможности найти теоретически наиболее выгодные формы профиля и крыла в плане. На эти вопросы отвеча-ет теория крыла Н.Е. Жуковского.

При отсутствии циркуляции нет разности давлений и скоростей на верхней и нижней поверх-ностях обтекаемого тела, а, следовательно, нет и подъемной силы. Это значит, что при наличии подъемной силы в потоке должны существовать вихри.

Циркуляция вокруг несимметричных тел в потоке возникает самостоятельно, без помощи его вращения за счет разгонного вихря [17].

Рис. 2.15. Бесциркуляционное обтекание крыла.

При обтекании, изображенном на рис. 2.15, подъемная сила на крыле не образуется, так как давления над крылом и под крылом равны. При этом предполагается, что струйки движутся с одинаковой скоростью по контуру крыла как над крылом, так и под крылом. Задняя критическая точка К2 при этом должна оказаться на верхней стороне профиля. Но такое обтекание невозмож-но. При реальном обтекании точка К2 немедленно окажется у задней кромки крыла. Появляется вихрь вокруг крыла, и обтекание будет напоминать картину, изображенную на рис 2.10.

2.6. Кармановские колебания

Все тела в зависимости от их формы и положения относительно потока обтекаются по-разному. В общем случае зависимость лобового сопротивления для самолета или его крыла в по-токе под углом ? известна:

.

Известно также, что сопротивление всякого тела в потоке есть сумма сопротивлений от нор-мальных напряжений (давлений на стенки) и от касательных напряжений (напряжений трения потока о стенки), распределенные по поверхности тела [20]:

, (2.24)

или в безразмерных коэффициентах

. (2.25)

Графически это можно представить так:

Рис. 2.16. Зависимость суммарного коэффициента Cx от угла атаки ?

Коэффициент Cx давл зависит от формы тела и может быть сведен либо до минимума, либо на-оборот увеличен до максимума. Второе слагаемое Cx тр слабо зависит от формы тела и определя-ется в основном состоянием поверхности тела.

Критерием удобообтекаемости может быть отношение Cx давл / Cx . Чем меньше отношение, тем более удобообтекаемым является тело. Это значит, что у удобообтекаемого тела лобовое сопро-тивление возникает в основном от трения среды о поверхность тела (рис. 2.17).

На рисунке 2.17 пластинка является удобообтекаемым телом. Все лобовое сопротивление ее будет определяться трением воздуха о ее поверхность, а нормальные напряжения взаимно унич-тожаются.

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84